Simulation of Grade Control, Stockpiling and Stacking for
Compliance Testing of Blending Strategies

C. Neufeld', G. Lyall?, and C. V. Deutsch'

!Centre for Computational Geostatistics (CCG)
University of Alberta

?Anglo American ...

Conditional simulation is typically used for quantifying uncertainty in a resource or reserve. Re-
alizations are not often carried past this stage due to a lack of tools for processing multiple reali-
zations in pit optimization or economic software. This paper shows one application. A simulated
realization was used to assess the uncertainty in the furnace feed for a nickel laterite deposit.
Different scenarios for grade control, stockpiling, and stacking/reclaiming were considered to
guantify their importance and impact on the variability of the furnace feed.

Introduction

This paper is the result of a project proposed by Anglo American. The objective of the project
was to evaluate the variability of ore being fed to the furnace with alternate grade control, stock-
piling and blending/stacking strategies. Base case scenarios for grade control, stockpiling, and
stacking had already been chosen. Anglo American wanted verification of the base case that they
had chosen by evaluating different options. Three different grade control schemes, three different
stockpiling options, and four different stacking options had to be considered. Nearly 40 potential
cases were evaluated.

The mining process starts by collecting close spaced grade control samples. No blasting is re-
quired in the ore. This allows the grade control samples to be collected throughout the entire
thickness of the deposit. The grade control drilling is used to create a grade control model with
kriging. The deposit is classified according to the grade control model. The material in the de-
posit is mined as either ore, or waste depending on the grade control model. The mined material
is sent to stockpiles for storage and preliminary blending. The material in the stockpiles is then
reclaimed and sent to a large stacker for final blending before being sent to the furnace. It is criti-
cal that the furnace feed meet the requirements set out during the design of the furnace.

The project was broken down into the following steps: (1) building a reference model, (2) stock-
piling the ore and waste material, (3) reclaiming the stockpiles and blending the material for feed
to a large stacker, and (4) a sensitivity analysis. Each point mentioned above will be discussed
below.

Deposit Characteristics and Feed Requirements

There are three classifications for material in the deposit; acidic ore, basic ore, and waste. Waste
is any material that has a nickel grade that is less than 0.9%. This could be internal waste or low
grade areas. Acidic ore is material that has a nickel grade greater than 0.9% and an SMR greater
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than 2.5. Basic ore has a nickel grade greater than 0.9% and an SMR less than 2.5. SMR stands
for the silica (SiO,) to magnesium (MgO) ratio. It is an important ratio for the furnace.

The deposit is divided into two main regions by a north-south line. There has been some geologi-
cally activity in the east resulting in some complex structures, while the ore in the western region
is relatively flat lying. WTO and ETO are used to define the west type ore and east type ore re-
spectively.

The furnace requirements are very specific. They were provided by Anglo American. The feed
should have a silica magnesium ratio (SMR) as close to 1.75 as possible. The SMR is the critical
parameter for the furnace feed. Keeping the SMR at the target value allows the furnace to run in
a self-sustaining state. If the SMR gets too low, too much energy will be required to run the fur-
nace. If it gets too high, the reaction inside the furnace will produce too much heat and will cause
damage to the furnace. The other controlling parameter is the iron content in the feed. There is
no real control on the iron feed, except that it can not exceed 18.5%. The following table lists the
furnace feed requirements,

‘ ‘ ‘ Lower Limit | Upper Limit ‘
Parameter Target | Lower Limit | Upper Limit (%) (%)
Si0,:MgO Ratio | 1.75 1.66 1.79 -5.0% +2.0% 0.02
SiO, 35 45 -5.0% +4.0% 1.5
MgO 20 25 -6.0% +10.0% 14
Fe 9.7 18.5 -15.0% +10.0% 1.7

Reference Model

The geostatistical modeling led to a high resolution realization at the resolution of % of a truck
load (15 to 20 tonne blocks), that is, a 2.5m by 2.5m by 2.5 m cell size (about 27 million cells).
The original topography and drillhole data are show in Figure 1. There were 30,204 assays in the
drillhole data.

Four rock types were used for creating the reference model. They are a combination of the acidic
and basic ore types and the east and west areas.

RT Description ORE EW

15 Basic ETO 200 5(ETO)
16 Basic WTO 200 6 (WTO)
25 Acid ETO 250/275/300 5 (ETO)
26 Acid WTO 250/275/300 | 6 (WTO)

Preliminary Statistics

Figures 2 through 5 show the histograms of the grades by rock type. The histograms are reasona-
bly well behaved. A table of the summary statistics is given below:

RT N Ni Fe Si02 MgO

m m m m

15 6323 1.73 0.76 12.58 8.32 36.83 7.28 27.60 8.98

16 4639 1.81 0.81 12.94 7.40 39.36 8.08 24.71 8.99

25 771 1.53 0.70 2719 | 13.05 | 31.30 | 1555 | 10.56 10.68

26 6457 1.66 0.95 23.66 | 11.18 | 3959 | 16.24 8.37 8.08
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Note that the acid and basic ores are quite different. The nickel and SiO2 grades are lower in the
acid rock types, but not dramatically. The Fe grades are significantly higher in the acid rock type
and the MgO grade is significantly less. These have a large affect on blending.

Scatterplots between all variables are shown on Figures 6 through 9. Although different in some
details, all rock types show similar features. The relationship of the different variables to Ni is
weak. The SiO2/MgO cross plot is characterized by low SiO2 and low MgO, high SiO2 and low
MgO, and median SiO2 and high MgO. These relationships will be captured in the stepwise
transform described below. The correlation coefficients are not particularly informative, but they
are tabulated below for interest and to judge the stability of the statistics:

RT Ni-Fe Ni-SiO2 Ni-MgO Fe-SiO2 Fe-MgO Si02-MgO
15 0.407 -0.292 -0.397 -0.619 -0.869 0.343
16 0.331 -0.146 -0.301 -0.379 -0.809 -0.056
25 0.087 -0.178 0.194 -0.867 -0.831 0.525
26 -0.046 -0.127 0.495 -0.767 -0.595 0.116

Stepwise Transformation of Grades

The grades are transformed in a stepwise manner so that the final multivariate structure is pre-
served as closely as possible. There are many non-linear, constraint and heteroscedastic features
on the cross plots (6 to 9). The following order was chosen:

1. Ni Nickel is the metal of interest, but poorly correlated with the rest
2. Fe|Ni Iron becomes less variable with high nickel grade

3. SiO2|Fe Silica is strongly related to iron

4. MgO | Fe Magnesia is highly correlated to iron

It is possible to correlate a variable to two secondary variables; however, that requires more data.
The relationships not explicitly accounted for (MgO to SiO2 and MgO, SiO2 to Ni,...) will be
captured by the relationships that are explicitly accounted for. Variography is considered with
the normal scores transforms and the stepwise conditional transforms.

The final transformation was arrived at after experimenting with MgO|SiO2 (instead of MgO|Fe),
but the overall relationships were not reproduced as well. There are a small percentage of the
samples with high MgO and SiO2.

Simulation

SGS of the stepwise transformed variables was performed. The simulation is straightforward: no
transformation is performed explicitly — it is handled by the stepwise transformation, no trends
are used — that could be considered in the future, 16 previously simulated grid nodes is considered
adequate.

The following seven steps summarize how the simulation and back transformation proceeds:
1. Stepwise transform of Ni (variable one) and Fe (variable two).

2. Stepwise transform of Fe (variable one — left untransformed) and SiO2

306-3




Stepwise transform of Fe (variable one — left untransformed) and MgO

4. Gaussian simulation of Ni and Fe (from step one), SiO2 (from step 2) and MgO (from
step 3).

5. Reverse stepwise transformation of Ni and Fe together.
6. Reverse stepwise transformation of SiO2 given Fe (from step 5).
7. Reverse stepwise transformation of MgO given Fe (from step 5).

The variograms in the principal directions were calculated with the gridded normal scores realiza-
tion. The normal scores variograms were reproduced within reasonable statistical fluctuations.
Note that the statistics above and the variograms were checked with only the grid cells that were
informed by the rock type model.

The cross plots between all variables also should be reproduced within reasonable statistical fluc-
tuations after back transformation. The normal scores values, of course, are uncorrelated. Fig-
ures 10 to 13 show the cross plot reproduction. There is a slight change in statistics due to de-
clustering; however, the cross plots are reproduced very closely.

Formatting for Subsequent Calculations

The four grade realizations were written out with the pushback number, the pit number, the bench
elevation, the X block index, the Y block index. The pushback number was provided by Anglo
American from one of their preliminary pit designs. The pushbacks will be used for the mining
simulator in one of the subsequent steps. Only blocks that have been informed are written to the
output file. This format can be considered in the grade control module and the mining simulation.

Grade Control

Grade control includes collecting samples and then estimating block grades. The general proce-
dure is: (1) simulate grade control drilling from the reference model at a spacing that may be im-
plemented in the mine, (2) assign a sampling error to the drilling results, and (3) estimate the
block grades that will be used for selection during mining.

Three grade control schemes were considered: (1) a base case, (2) a high selectivity, or closely
spaced, case, and (3) a low selectivity, or widely spaced, case:

ETO WTO
Base Case 12.5mby 12.5m 125mby 6.25m
High Selectivity 6.25mby 6.25m 6.25m by 6.25 m
Low Selectivity 25.0mby 25.0 m 25.0m by 125m

Simulated Grade Control Sampling

The grade control samples were extracted on a regular grid with a sampling error. The spacing of
the grade control drilling is potentially different in ETO and WTO areas. A close up of the sam-
ples for the base case are shown in Figure 14. Figure 15 and Figure 16 show the samples taken
for the high and low selectivity cases respectively.

The relative sampling error was normally distributed with a standard deviation of 5%, that is:
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Zgrade control = (l+ y . 005) ’ Zreference

where y is a standard normal deviate. This resulted in some samples have almost no sampling
error, and some samples having a relatively high error (greater than 10%). There was no system-
atic bias applied to the grade control samples.

Grade Control Estimation

Nickel, iron, silica, and magnesia were sampled by the grade control drilling. Each variable was
kriged by rock type using ordinary kriging. The correlation between the variables need not be
accounted for explicitly because they are equally sampled (all variables available at all data loca-
tions) and closely samples.

Experimental variograms were calculated for the sampled data. The experimental variograms
were similar to the normal score variograms used for generating the simulated model, but with a
modestly higher nugget effect due to the sampling errors. Therefore, the normal score variograms
were also used for kriging the grade control model.

The simulated nickel model and the three grade control models are shown in Figure 17. The ar-
eas of low and high nickel are reproduced in the base case grade control model. The high and
low areas are reproduced better in the high selectivity grade control model than the base case
model. The low selectivity model does not reproduce the high and low areas very well.

Mining and Stockpiling

The stockpiling was done using the reference grade realization and the grade control models. The
goal is to simulate mining the deposit to stockpiles, according to the grade control model. The
reference grade values and the grade control grades will be carried forward to the stacking and
reclaiming process. Three cases were considered for the mining and stockpiling: (1) base case
stockpiles of 25000 tonnes, (2) larger stockpiles for the wet season of 50000 tonnes, and (3)
stockpiles that were constructed at random.

Mining Simulation

There will be two backhoes mining ore in as many as six pits / mine faces. 35.7 tonne trucks will
be used for mining. The moisture content of the ore will be about 30% from the mine prior to dry-
ing. Average densities were used. The dry density for acid type ore used was 0.97 and for basic
ore was 1.18. The stockpiles are built by dumping truckloads 3m apart along the full 150 m
length (50 truck loads). All 50 truckloads are aimed at the same characteristics. The material is
dozed up the pile after two rows have been dumped.

The deposit was mined in a sequential fashion: by-pushback and by-pit. Pushback 1 was mined
before pushback 2, and pit 1 in pushback 1 was mined before pit 2 in pushback 1. Pushback 5
was not mined for this study — this is the poorly defined material to be delineated over the early
years of the mine. Within each pit, the deposit was mined from top to bottom by mining the top
bench first, then moving one bench down. The benches followed elevation and not the surface.

Two adjacent blocks were loaded into a truck and each truckload was classified based on the
grade control estimates. The reference values and grade control values were tracked to the stock-
pile. Estimated and true grades were carried through all subsequent calculations.
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Stockpiling

Stockpiles are constructed for the wet season; when mining stops for three months. The stockpiles
for the dry season are likely to be smaller. The simulation study assumed that all material will be
rehandled, that is, stockpiled and then reclaimed and hauled to the plant. The wet-season stock-
piles are constructed according to the following parameters: height of 8.7 m, length of 150 m,
width of 57 m, back slope of 34 degrees, front slope of 11 degrees. There is a 50,000 wet tonne
capacity (30% moisture). It is expected that there will be 12 seasonal stockpiles.

The base case scenario will be for the dry season. The stockpiles are a smaller 25,000 wet tonnes,
although they are the same 150 m length — the height will be reduced. The target will be for 5 to
10 stockpiles. The first option considered will be for bigger piles — the same as the wet season.
The second option will be for a random order — close to mining directly to the stacker.

Each truckload was classified as high SMR or low SMR based on the grade control estimates.
The low SMR ore was sent to one stockpile and the high SMR ore was sent to another stockpile.
One high SMR stockpile and one low SMR stockpile were built at a time. Material that had an
estimated SMR <= 1.75 was sent to a low SMR stockpile. Material with an estimate SMR > 1.75
was sent to a high SMR stockpile.

An additional case was considered where two different types of high SMR stockpiles were con-
structed: (1) a high SMR pile with a low, <1.5%, Ni grade and (2) a high SMR pile with a high,
>1.5%, Ni grade. The low Ni stockpiles were kept in reserve if the high Ni, high SMR stockpiles
were exhausted.

Stacking and Reclaiming

The stockpiles from the previous step are mined and fed to the stacker to build its large stacker
pile. The stacker pile is then reclaimed and fed to the furnace. Four scenarios were considered:
(1) base case stacker piles that contained 100000 tonnes, (2) small stacker piles that contained
50000 tonnes, (3) large stacker piles that contained 200000 tonnes, and (4) base case stacker piles
with a 3-day lag to get the sample assays back.

The feed to the stacker was a combination from the low SMR and high SMR stockpiles. The es-
timated SiO, and MgO content of each pile was used to calculate the initial blend from the stock-
piles. While the stacker pile was being built, samples were taken at 2 hour intervals. An error of
5% was added to these samples. The assayed samples were used to adjust the blend from the
stockpiles to ensure the stacker pile met the target SMR of 1.75. The stacker pile was then re-
claimed and fed to the furnace. The variability of the feed to the furnace was used to judge how
good each scenario performed. Figure 18 shows the furnace feed for the base case.

The stacker algorithm was designed to ensure that the stacker pile meets the furnace require-
ments. If the pile does not meet the specified SMR, from the sampling, then the blend is adjusted
so that the pile will have an SMR of 1.75 within a day. The targeting algorithm is:

B 1.75-(tp +ta)—actsmr -1,
- t

a

tr

Where tr is the target SMR of the material to add to the pile, actsmr is the actual SMR of the ma-
terial in the pile, t, is the tones on the pile, and t, is the tones to add to the pile. This corrected an
out of specification stacker pile within a day.
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Sensitivity Analysis

A sensitivity analysis was done to assess the impact that each variable had on the furnace feed.
The standard deviation of the furnace feed SMR was used to compare the 36 different possible
scenarios. The lower the standard deviation, the better that scenario was rated.

Recall the different scenarios to consider. There were three grade control schemes were consid-
ered: (1) a base case grade control program, (2) a high selective, or closely spaced, case, and (3)
a low selectivity, or widely spaced, case. There were three different mining and stockpiling
cases: (1) base case stockpiles, (2) larger stockpiles for the wet season, and (3) stockpiles that
were constructed at random. Finally, there were four scenarios for the stacking and reclaiming:
(1) base case stacker piles, (2) small stacker piles, (3) large stacker piles, and (4) base case stacker
piles with a 3-day lag to get the sample assays back. In summary:

Variable Cases Description
Grade Control 3 Base case, close spaced, wide spaced
Stockpiles 3 Base case, wet season, random
Stacker 4 Base case, half length, double length, and
three day lag

We considered the full set of 3x3x4=36 cases, which is the full combinatorial of scenarios.

Figure 19 shows two different histograms. The histogram on the left is for the low selectivity
sampling case and the histogram on the right is for the base sampling case. There is an obvious
reduction in variability (improvement in blending) with the denser base case sampling.

Figure 20 shows the results of the sensitivity analysis. It is clear from the results that the most
important factor is grade control for reducing the SMR variability. Closer grade control samples
resulted in better estimates of SiO2 and MgO, and therefore a more stable feed to the furnace.
The second most important factor was the stockpiling method. The base case and wet season
stockpiles showed no difference in their affect on the SMR of the furnace feed. The random
stockpiling showed a large improvement over the base case stockpiles for the base case sampling.
Even though the random stockpiling method showed an improvement over the other methods, it
is not a feasible operating alternative. It is important to note that the random scheme is not the
same as sending the material from the mine to the stacker; it just means that the stockpiles are
built with maximum homogeneity — rather than targeting SMR and Ni in their construction. The
least important factor was the stacker pile size and sample delay.

Figure 21 shows the furnace feed that would be achieved with the low selectivity samples and
base case stockpiling and stacking. Figure 22 shows the furnace feed with the base case samples.
And Figure 23 shows the furnace feed with the high selectivity samples. Note that the variability
of the SMR in the furnace feed decreases as the grade control sampling is done on a smaller grid.
There is a large reduction in variability from the low selectivity case to the base case, but not a
very large drop from the base case to the high selectivity case. Recall the plant requirements
listed earlier. They are in the following table:

Lower Limit | Upper Limit

Parameter | Target | Lower Limit | Upper Limit (%) (%)

Si0,:MgO | 1.75 1.66 1.79 -5.0% +2.0% 0.02
SiO, 35 45 -5.0% +4.0% 15
MgO 20 25 -6.0% +10.0% 1.4

Fe 9.7 18.5 -15.0% +10.0% 1.7
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If we calculate the statistics for the base case scenario, we get the following numbers:

Parameter | Average | Lower Limit | Upper Limit | |

SiO,:MgO Ratio | 1.752 1.729 1.765 0.006
SiO; 38.36 36.26 39.79 0.64
MgO 21.90 20.71 22.68 0.36

Fe 15.31 14.00 17.60 0.54

Note that all of the requirements have been met. In other words, the base case scenario can
achieve the required plant feed. However, choosing which scenarios to use may require addi-
tional work. One interesting point that came out of the sensitivity study was the effect that the
grade control had on the nickel coming out of the furnace.

Effect of Grade Control on Nickel Selectivity

An interesting result came out of the sensitivity study. That is a more intensive grade control
program has two advantages: (1) the SMR variability of the plant feed can be reduced, and (2) the
average nickel grade of the processed ore increases. The table below shows the increase in
Nickel grade for the different grade control scenarios. The nickel grade in table is calculated
from the plant feed, not the insitu ore.

Grade Control Average % Ni ‘ Average % Ni ‘
Drilling Blending for Ni
Low Selectivity 1.604 1.737
Base 1.633 1.774
High Selectivity 1.665 1.821

Figure 24 shows how the selectivity of the mine improves with more grade control drilling. The
actual Ni above a cutoff of 0.9 does not change. The estimated nickel grade above the cutoff does
not change either. What changes is the classification of the material above cutoff. The mined
nickel grade increases from 1.58 for the coarse grade control drilling to 1.62 for the base case
drilling and to 1.65 %Ni for the fine spaced grade control drilling.

Conclusions

This study has shown that conditional simulation is a powerful tool for uncertainty assessment at
any point in the mining process. It is a powerful, yet simple tool, for quantifying uncertainty in
complex settings.

The difficulty needs to be faced is processing multiple realizations. It is time consuming and te-
dious for someone to repeat the same task 50-100 times with different realizations. Post-
processing tools need to be developed to take full advantage of simulation.
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Figure 9: Scatterplots of grade variables in 26 (acid WTO).
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Figure 10: Scatterplots of simulated grade variables (1 in 100 plotted) in RT 15 (basic ETO) —to
be compared with Figure 6.
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Figure 11: Scatterplots of simulated grade variables (1 in 100 plotted) in RT 16 (basic WTO) —
to be compared with Figure 7.
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Figure 12: Scatterplots of simulated grade variables (1 in 100 plotted) in RT 25 (acid ETO) - to
be compared with Figure 8.
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Figure 13: Scatterplots of simulated grade variables (1 in 100 plotted) in RT 26 (acid WTO) - to
be compared with Figure 9.
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Figure 14: Close up map of the sample locations for the base case sampling.
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Figure 15: Close up map of the sample locations for the high selectivity sampling.
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Figure 16: Close up map of the sample locations for the low selectivity sampling.
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Figure 17: Simulated nickel grade in the small area (upper left). Grade control estimated nickel
grade using the base case samples (upper right). Grade control estimated nickel grade using the
high selectivity samples (lower left). Grade control estimated nickel grade using the low selectiv-
ity case samples (lower right).
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Figure 18: Simulated furnace for the base case. The green line represents the SMR, the red line
is the nickel grade, and the blue line is the iron grade.
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Figure 19: Histograms showing two different sets of furnace feed. The histogram on the left
shows the variability in the furnace feed for the low selectivity grade control and the histogram on
the right shows the variability for the base case grade control. The low selectivity case has almost
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twice the variability compared to the base grade control case.

Figure 20: Sensitivity analysis results. The cases have been sorted from high SMR variability
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Figure 21: Furnace feed for the low selectivity samples, base case stockpiles, and base case

stacker piles.
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Figure 22: Furnace feed for the base case samples, base case stockpiles, and base case stacker

piles.
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Figure 23: Furnace feed for the high selectivity samples, base case stockpiles, and base case
stacker piles.
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Figure 24: Check for the impact that the grade control drilling has on the nickel grade. The base
case grade control drilling is on the top, the close spaced drilling is in the lower left and the

coarse drilling is in the lower right.
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